Para las losas sin vigas entre sus apoyos (α1 = 0) y sin vigas de borde (βt = 0), la distribución de los momentos negativos totales a las franjas de columna es simplemente 75 y 100 por ciento para los apoyos interiores y exteriores, respectivamente, y la distribución del momento positivo total es 60 por ciento. Para las losas con vigas entre sus apoyos, la distribución depende de la rigidez relativa de las vigas y la losa; si hay vigas de borde, la relación entre la rigidez torsional de la viga de borde y la rigidez flexional de la losa también afecta la distribución. Las Figuras 19-6, 19-7 y 19-8 simplifican la evaluación de la rigidez relativa α. Para evaluar βt, la relación de rigidez para las vigas de borde, la Tabla 19-2 simplifica el cálculo de la constante de torsión C.
Mostrando entradas con la etiqueta Losas. Mostrar todas las entradas
Mostrando entradas con la etiqueta Losas. Mostrar todas las entradas
sábado, 3 de abril de 2010
viernes, 2 de abril de 2010
Momentos mayorados en las franjas de columna
Los momentos mayorados positivos y negativos a ser resistidos por una franja de columna, según se define en la Figura 19-1, dependen de la rigidez relativa de las vigas y la losa y de la relación ancho-luz del panel en la dirección analizada. Hay una excepción a esta regla cuando un apoyo tiene un ancho transversal importante.
Se requiere que la franja de columna en la parte externa de un tramo exterior resista el momento negativo mayorado total que actúa en la franja de diseño, a menos que se provean vigas de borde.
Cuando el ancho transversal de un apoyo es mayor o igual que tres cuartos (3/4) del ancho de la franja de diseño, el artículo 13.6.4.3 requiere que el momento negativo mayorado se distribuya uniformemente en la franja de diseño.
Se requiere que la franja de columna en la parte externa de un tramo exterior resista el momento negativo mayorado total que actúa en la franja de diseño, a menos que se provean vigas de borde.
Cuando el ancho transversal de un apoyo es mayor o igual que tres cuartos (3/4) del ancho de la franja de diseño, el artículo 13.6.4.3 requiere que el momento negativo mayorado se distribuya uniformemente en la franja de diseño.
El porcentaje de los momentos mayorados totales negativos y positivos a ser resistidos por una franja de columna se pueden determinar usando las tablas de los artículos 13.6.4.1 (momentos negativos interiores), 13.6.4.2 (momentos negativos exteriores) y
13.6.4.3 (momentos positivos), o bien a partir de las siguientes expresiones:
Porcentaje de momento negativo mayorado en un apoyo interior a ser resistido por la franja de columna
Etiquetas:
Losas,
Metodo de Diseño
jueves, 1 de abril de 2010
Requisito especial para la transferencia de carga entre la losa y una columna de borde
– Para las columnas que soportan una losa sin viga, la transferencia de carga de la losa directamente a las columnas de apoyo (sin transferencia de carga intermedia a través de vigas) es una de las condiciones de diseño más críticas para los sistemas de placas planas o losas planas. La resistencia al corte de la unión viga-columna es crítica. El diseñador no debe tomar a la ligera este aspecto
del diseño de las losas en dos direcciones. Los sistemas de losas en dos direcciones generalmente son bastante "tolerantes" si se comete un error en la distribución o incluso en la cantidad de armadura de flexión, pero no habrá ninguna tolerancia si se comete un error crítico en la resistencia al corte. La Parte 16 contiene requisitos especiales para la transferencia de corte directo y la transferencia de momento en las uniones losa-columna.
El artículo 13.6.3.6 trata la transferencia de momento potencialmente crítica entre una losa sin vigas y una columna de borde. Para asegurar que la resistencia al corte fuera adecuada cuando se utilizaban los coeficientes de momento aproximados para tramos extremos indicados en 13.6.3.3, la edición 1989 del Código requería que para determinar la fracción del momento no balanceado transmitido por excentricidad del corte (γv) se utilizara la totalidad de la resistencia nominal Mn proporcionada por la franja de columna de acuerdo con 11.12.6 (para los tramos extremos sin vigas de borde, la franja de columna se dimensiona para resistir el momento negativo exterior mayorado total). Este requisito se modificó en ACI 318-95. Para determinar la fracción del momento
no balanceado transferido por excentricidad del corte, en vez de Mn se debe usar 0,3Mo. La armadura total provista en la franja de columna incluye la armadura adicional concentrada sobre la columna para resistir la fracción del momento no balanceado transmitido por flexión, γfMu = γf (0,26Mo), expresión para la cual el coeficiente de momento (0,26) se toma de 13.6.3.3 y γf se determina con la ecuación (13-1).
del diseño de las losas en dos direcciones. Los sistemas de losas en dos direcciones generalmente son bastante "tolerantes" si se comete un error en la distribución o incluso en la cantidad de armadura de flexión, pero no habrá ninguna tolerancia si se comete un error crítico en la resistencia al corte. La Parte 16 contiene requisitos especiales para la transferencia de corte directo y la transferencia de momento en las uniones losa-columna.
El artículo 13.6.3.6 trata la transferencia de momento potencialmente crítica entre una losa sin vigas y una columna de borde. Para asegurar que la resistencia al corte fuera adecuada cuando se utilizaban los coeficientes de momento aproximados para tramos extremos indicados en 13.6.3.3, la edición 1989 del Código requería que para determinar la fracción del momento no balanceado transmitido por excentricidad del corte (γv) se utilizara la totalidad de la resistencia nominal Mn proporcionada por la franja de columna de acuerdo con 11.12.6 (para los tramos extremos sin vigas de borde, la franja de columna se dimensiona para resistir el momento negativo exterior mayorado total). Este requisito se modificó en ACI 318-95. Para determinar la fracción del momento
no balanceado transferido por excentricidad del corte, en vez de Mn se debe usar 0,3Mo. La armadura total provista en la franja de columna incluye la armadura adicional concentrada sobre la columna para resistir la fracción del momento no balanceado transmitido por flexión, γfMu = γf (0,26Mo), expresión para la cual el coeficiente de momento (0,26) se toma de 13.6.3.3 y γf se determina con la ecuación (13-1).
Etiquetas:
Losas,
Metodo de Diseño
viernes, 2 de octubre de 2009
Momentos mayorados negativos y positivos.
El momento estático total de un tramo se divide en momentos de diseño positivos y negativos como se ilustra en la Figura 19-4. En la Figura 19-4 se ilustran los momentos en el tramo extremo de una placa plana o una losa plana sin vigas de borde (sistemas de losa sin vigas entre sus apoyos interiores y sin viga de borde). Para otras condiciones el momento estático total Mo se distribuye como se indica en la Tabla 19-1.
Etiquetas:
Losas
martes, 4 de agosto de 2009
Diseño Preliminar de Losas en Dos Direcciones.
Antes de proceder con el Método de Diseño Directo es necesario determinar una altura de losa preliminar h para controlar las flechas, de acuerdo con los requisitos de altura mínima dados en el artículo 9.5.3. Tanto la Tabla 18-1 como la Figura 18-3 se pueden utilizar para simplificar el cálculo de la altura mínima.
Para los sistemas de losas sin vigas, en esta etapa del proceso de diseño es aconsejable verificar la resistencia al corte de la losa en la proximidad de las columnas u otros apoyos de acuerdo con el requisito especial para el corte en losas (11.12). Ver la discusión sobre el artículo 13.5.4 en la Parte 18.
Una vez que se ha seleccionado una altura de losa, el Método de Diseño Directo, el cual básicamente consiste en un procedimiento de análisis en tres pasos, implica: (1) determinar el momento estático mayorado total para cada tramo, (2) dividir el momento estático mayorado total en un momento positivo y otro momento negativo en cada tramo, y (3) distribuir los momentos positivos y negativos a las franjas de columna y las franjas intermedias en la dirección transversal.
Para efectuar el análisis el sistema de losas se divide en franjas de diseño compuestas por una franja de columna más dos medias franjas intermedias, según lo definido en los artículos 13.2.1 y 13.2.2 y como se ilustra en la Figura 19-1. En el caso de los sistemas de losas en los cuales las longitudes de tramo varían a lo largo de la franja de diseño, el diseñador deberá aplicar su criterio profesional para aplicar las definiciones dadas en el artículo 13.2.1.
Para los sistemas de losas sin vigas, en esta etapa del proceso de diseño es aconsejable verificar la resistencia al corte de la losa en la proximidad de las columnas u otros apoyos de acuerdo con el requisito especial para el corte en losas (11.12). Ver la discusión sobre el artículo 13.5.4 en la Parte 18.
Una vez que se ha seleccionado una altura de losa, el Método de Diseño Directo, el cual básicamente consiste en un procedimiento de análisis en tres pasos, implica: (1) determinar el momento estático mayorado total para cada tramo, (2) dividir el momento estático mayorado total en un momento positivo y otro momento negativo en cada tramo, y (3) distribuir los momentos positivos y negativos a las franjas de columna y las franjas intermedias en la dirección transversal.
Para efectuar el análisis el sistema de losas se divide en franjas de diseño compuestas por una franja de columna más dos medias franjas intermedias, según lo definido en los artículos 13.2.1 y 13.2.2 y como se ilustra en la Figura 19-1. En el caso de los sistemas de losas en los cuales las longitudes de tramo varían a lo largo de la franja de diseño, el diseñador deberá aplicar su criterio profesional para aplicar las definiciones dadas en el artículo 13.2.1.
Etiquetas:
Losas
lunes, 3 de agosto de 2009
Losas en dos direcciones - Método de Diseño Directo
El Método de Diseño Directo es un procedimiento aproximado para analizar sistemas de losas en dos direcciones solicitados exclusivamente por cargas gravitatorias. Debido a que se trata de un procedimiento aproximado, la aplicación de este método se limita a los sistemas de losas que satisfacen las limitaciones especificadas en el artículo 13.6.1. Los sistemas de losas en dos direcciones que no satisfacen estas limitaciones se deben analizar mediante procedimientos más exactos tal como el Método del Pórtico Equivalente especificado en 13.7. En la Parte 20 presentamos una discusión del Método del Pórtico Equivalente, junto con ejemplos de diseño.
Con la publicación de ACI 318-83, el Método de Diseño Directo simplificó enormemente el análisis de los momentos de los sistemas de losas en dos direcciones, ya que se eliminaron todos los cálculos de las rigideces para determinar los momentos de diseño en un tramo extremo. Las expresiones para calcular la distribución en función de la relación de rigidez αec fueron reemplazadas por una tabla de coeficientes de momento para distribuir los momentos totales en los tramos finales (13.6.3.3). Otro cambio introducido fue que la anterior ecuación aproximada (13-4) para transferencia de momento no balanceado entre la losa y
una columna interior también se simplificó, eliminando el término de αec. A partir de estos cambios el Método de Diseño Directo se transformó en un procedimiento de diseño verdaderamente directo, uno que permite determinar todos los momentos de diseño mediante la aplicación de coeficientes de momento. Además, se incorporó un nuevo artículo 13.6.3.6, que contiene un requisito especial para el corte debido a la transferencia de momento entre una losa sin vigas y una columna de borde, y que se aplica cuando se utilizan los coeficientes de momento aproximados de 13.6.3.3. Ver la discusión del artículo 13.6.3.6 a continuación. Hasta la edición 1989 del Código (revisada en 1992), el artículo R13.6.3.3 incluía un "Método de Rigidez Modificado" que reflejaba la distribución original, y que permitía confirmar que las ayudas para el diseño y el software basados en la distribución original en función de la relación de rigidez αec aún eran aplicables. El "Método de Rigidez Modificado" se eliminó del artículo R13.6.3.3 en la edición 1995 del Código y el comentario.
Con la publicación de ACI 318-83, el Método de Diseño Directo simplificó enormemente el análisis de los momentos de los sistemas de losas en dos direcciones, ya que se eliminaron todos los cálculos de las rigideces para determinar los momentos de diseño en un tramo extremo. Las expresiones para calcular la distribución en función de la relación de rigidez αec fueron reemplazadas por una tabla de coeficientes de momento para distribuir los momentos totales en los tramos finales (13.6.3.3). Otro cambio introducido fue que la anterior ecuación aproximada (13-4) para transferencia de momento no balanceado entre la losa y
una columna interior también se simplificó, eliminando el término de αec. A partir de estos cambios el Método de Diseño Directo se transformó en un procedimiento de diseño verdaderamente directo, uno que permite determinar todos los momentos de diseño mediante la aplicación de coeficientes de momento. Además, se incorporó un nuevo artículo 13.6.3.6, que contiene un requisito especial para el corte debido a la transferencia de momento entre una losa sin vigas y una columna de borde, y que se aplica cuando se utilizan los coeficientes de momento aproximados de 13.6.3.3. Ver la discusión del artículo 13.6.3.6 a continuación. Hasta la edición 1989 del Código (revisada en 1992), el artículo R13.6.3.3 incluía un "Método de Rigidez Modificado" que reflejaba la distribución original, y que permitía confirmar que las ayudas para el diseño y el software basados en la distribución original en función de la relación de rigidez αec aún eran aplicables. El "Método de Rigidez Modificado" se eliminó del artículo R13.6.3.3 en la edición 1995 del Código y el comentario.
Etiquetas:
Losas
domingo, 10 de mayo de 2009
Construcción de losas izadas - Refencias.
Para la construcción de losas izadas el artículo 7.13.4 dirige al usuario a los artículos 13.3.8.6 y 18.12.6.
Referencias
3.1 ACI Detailing Manual - 1994, Publication SP-66(94), American Concrete Institute, Detroit, MI, 1994.
3.2 Manual of Standard Practice, 27º Edición, Concrete Reinforcing Steel Institute, Schaumburg, IL, 2001.
3.3 Structural Welded Wire Fabric Detailing Manual, WWR-600, Wire Reinforcement Institute, McLean, VA, 1994.
3.4 Babaei, K. y Hawkins, N.M., "Field Bending and Straightening of Reinforcing Steel,” Concrete International: Design and Construction, Vol. 14, No. 1, Enero 1992.
3.5 Standard Specification for Tolerances for Concrete Construction and Materials and Commentary, ACI 117/117-90, American Concrete Institute, Detroit, MI, 1990.
3.6 Minimum Design Loads for Buildings and Other Structures, (ASCE 7-98), American Society of Civil Engineers, Reston, VA, 1998.
3.7 Design and Typical Details of Connections for Precast and Prestressed Concrete, Publication MNL-123-88, Precast/Prestressed Concrete Institute, Chicago, IL, 1988.
3.8 PCI Building Code Committee, "Proposed Design Requirements for Precast Concrete,” PCI Journal, Vol. 31, No. 6, Nov.-Dic. 1986, pp. 32-47.
Referencias
3.1 ACI Detailing Manual - 1994, Publication SP-66(94), American Concrete Institute, Detroit, MI, 1994.
3.2 Manual of Standard Practice, 27º Edición, Concrete Reinforcing Steel Institute, Schaumburg, IL, 2001.
3.3 Structural Welded Wire Fabric Detailing Manual, WWR-600, Wire Reinforcement Institute, McLean, VA, 1994.
3.4 Babaei, K. y Hawkins, N.M., "Field Bending and Straightening of Reinforcing Steel,” Concrete International: Design and Construction, Vol. 14, No. 1, Enero 1992.
3.5 Standard Specification for Tolerances for Concrete Construction and Materials and Commentary, ACI 117/117-90, American Concrete Institute, Detroit, MI, 1990.
3.6 Minimum Design Loads for Buildings and Other Structures, (ASCE 7-98), American Society of Civil Engineers, Reston, VA, 1998.
3.7 Design and Typical Details of Connections for Precast and Prestressed Concrete, Publication MNL-123-88, Precast/Prestressed Concrete Institute, Chicago, IL, 1988.
3.8 PCI Building Code Committee, "Proposed Design Requirements for Precast Concrete,” PCI Journal, Vol. 31, No. 6, Nov.-Dic. 1986, pp. 32-47.
Etiquetas:
Losas
viernes, 8 de mayo de 2009
Flechas instantáneas de vigas y losas armadas en una dirección (no pretensadas)
Las flechas iniciales o instantáneas de las vigas y losas armadas en una dirección ocurren inmediatamente después que se aplica carga a un elemento estructural. Los principales factores que afectan la flecha instantánea de un elemento son (ver Referencia 10.3):
a. la magnitud y la distribución de la carga,
b. la luz y las condiciones de vínculo,
c. las propiedades de la sección y la cuantía de acero,
d. las propiedades de los materiales, y
e. la cantidad y extensión de la fisuración por flexión.
Las siguientes propiedades del hormigón afectan significativamente el comportamiento de los elementos armados solicitados a flexión bajo cargas de corta duración: resistencia a la compresión (f'c), módulo de elasticidad (Ec) y módulo de rotura (fr). El módulo de elasticidad en particular evidencia más variación en función de la calidad del hormigón, la edad del hormigón, el nivel de tensión, y la velocidad de aplicación o la duración de las cargas.
domingo, 8 de marzo de 2009
Losas Nervadas Hormigonadas en Obra.
Desde 1989 el Código exige que en las vigas perimetrales se coloque armadura continua para integridad estructural. La cantidad de armadura requerida es como mínimo igual a un sexto de la armadura de tracción requerida para el momento negativo en el apoyo, y un cuarto de la armadura de tracción requerida para el momento positivo en el centro del tramo. El Código 2002 exige un mínimo de dos barras en todos los casos. Otro requisito incorporado por primera vez en el Código 2002 es el que permite explícitamente el uso de empalmes mecánicos y soldados para la armadura continua de las losas nervuradas hormigonadas en obra. Las Figuras 3-11 a 3-13 ilustran los detalles de armado requeridos para el caso general de una losa nervurada.
Etiquetas:
Detalles de Armado,
Losas
domingo, 14 de diciembre de 2008
VIGAS Y LOSAS ARMADAS EN UNA DIRECCIÓN: Distribución de la armadura de tracción (III).
Para el caso habitual de vigas con armadura Grado 60 y un recubrimiento libre de 2 in. hasta la cara traccionada, y suponiendo fs = 0,6 × 60 = 36 ksi, la máxima separación de las barras es de 10 in. Usando el límite superior de la Ecuación (10-4), la máxima separación admisible, independientemente del recubrimiento, es de 12 in. para fs = 36 ksi. El límite de la separación no depende del tamaño de barra utilizado. Por lo tanto, para una determinada cantidad de armadura de flexión requerida, este enfoque alentará el uso de barras más pequeñas a fin de satisfacer el criterio de la Ecuación (10-4).
Aunque la Ecuación (10-4) se puede resolver de manera sencilla, igualmente resulta conveniente tener una tabla que ilustre la máxima separación de la armadura para diferentes espesores de recubrimiento libre (ver Tabla 9-1 a continuación).
Aunque la Ecuación (10-4) se puede resolver de manera sencilla, igualmente resulta conveniente tener una tabla que ilustre la máxima separación de la armadura para diferentes espesores de recubrimiento libre (ver Tabla 9-1 a continuación).
sábado, 13 de diciembre de 2008
VIGAS Y LOSAS ARMADAS EN UNA DIRECCIÓN: Distribución de la armadura de tracción (II).
Intentando salvar algunas de las limitaciones del enfoque anterior, a partir del Código 1999 se ha adoptado una ecuación sencilla y más práctica, la cual limita la máxima separación de las armaduras de forma directa. El nuevo método intenta controlar la fisuración superficial a un ancho que, en forma general, sea aceptable en la práctica, pero que puede variar ampliamente dentro de una estructura dada. Por este motivo, el nuevo método no pretende predecir el ancho que tendrán las fisuras en la obra. De acuerdo con el nuevo método, la separación de la armadura más cercana a una superficie en tracción no deberá ser mayor que el valor dad por
donde s = separación entre los centros de las barras de la armadura traccionada por flexión más cercana a la cara más
traccionada, in. (si hay una única barra o alambre más cercano a la cara más traccionada, s es el ancho de la cara más traccionada).
fs = tensión en la armadura calculada para las cargas de servicio (ksi), determinada como el momento no mayorado dividido por el producto del área de acero por el brazo de palanca interno. Se permite adoptar fs igual a 60 por ciento de la tensión de fluencia especificada de la armadura no pretensada.
cc = espesor del recubrimiento libre, medido desde la superficie traccionada más cercana hasta la superficie de la armadura traccionada por flexión, in.
La Figura 9-2 compara la máxima separación de la armadura según la edición 1999 del Código con la de la edición de 1995 para losas con una sola capa de armadura. Observar que los requisitos de la edición 1999 relajan considerablemente el requisito de separación para el caso de grandes recubrimientos, de entre 2 in. y 4 in. Observar también que, al contrario del requisito de 1995, esta separación es independiente de las condiciones de exposición.
traccionada, in. (si hay una única barra o alambre más cercano a la cara más traccionada, s es el ancho de la cara más traccionada).
fs = tensión en la armadura calculada para las cargas de servicio (ksi), determinada como el momento no mayorado dividido por el producto del área de acero por el brazo de palanca interno. Se permite adoptar fs igual a 60 por ciento de la tensión de fluencia especificada de la armadura no pretensada.
cc = espesor del recubrimiento libre, medido desde la superficie traccionada más cercana hasta la superficie de la armadura traccionada por flexión, in.
La Figura 9-2 compara la máxima separación de la armadura según la edición 1999 del Código con la de la edición de 1995 para losas con una sola capa de armadura. Observar que los requisitos de la edición 1999 relajan considerablemente el requisito de separación para el caso de grandes recubrimientos, de entre 2 in. y 4 in. Observar también que, al contrario del requisito de 1995, esta separación es independiente de las condiciones de exposición.
viernes, 12 de diciembre de 2008
VIGAS Y LOSAS ARMADAS EN UNA DIRECCIÓN: Distribución de la armadura de tracción (I).
Desde el inicio se identificaron tres motivos por los cuales es necesario limitar el ancho de las fisuras en el hormigón. Estos son la apariencia (estética), la corrosión y la impermeabilidad. Rara vez los tres motivos son relevantes para una misma estructura. La apariencia es importante en el caso del hormigón a la vista, tal como los paneles de los tabiques. La corrosión es importante en el caso del hormigón expuesto a ambientes agresivos. La impermeabilidad puede ser necesaria para las estructuras marítimas o sanitarias. La apariencia exige limitar el ancho de las fisuras en la superficie. Esto se puede asegurar ubicando la armadura tan cerca de la superficie como sea posible (usando poco recubrimiento) para impedir que las fisuras se ensanchen. Por el contrario, el control de la corrosión se obtiene usando hormigón de mejor calidad y aumentando el espesor del recubrimiento de hormigón. La impermeabilidad requiere una severa limitación del ancho de las fisuras, aplicable solamente a estructuras especializadas. Por lo tanto, se debería reconocer que es posible que un único requisito, tal como la Ecuación (10-4) de este código, puede no ser suficiente para cubrir los tres motivos mencionados, es decir, apariencia, corrosión e impermeabilidad.
Existe una fuerte correlación entre el ancho de las fisuras superficiales y el recubrimiento de hormigón, dc, como se ilustra en la Figura 9-1. Para una determinada deformación específica del acero, cuanto mayor sea el recubrimiento mayor será el ancho de las fisuras y mayor será la influencia sobre la apariencia. Entre 1971 y 1995, el código especificaba factores z limitantes en base al concepto de que era necesario limitar el ancho de las fisuras superficiales. Los valores especificados de z = 175 y 145 kips/in., para exposiciones interiores y exteriores, respectivamente, correspondían a fisuras de 0,016 y 0,013 in. de ancho (ver Apéndice 9A). Se asumía que limitando el ancho de las fisuras a estos valores se lograría protección contra la corrosión. Pero, para poder satisfacer
los valores límites de z especificados, el método básicamente alentaba la reducción del recubrimiento de hormigón, lo cual potencialmente podía perjudicar la protección contra la corrosión. Lo que es más, el método penalizaba fuertemente las estructuras con recubrimientos de más de 2 in. ya sea reduciendo la separación o las tensiones bajo cargas de servicio de la armadura.
La influencia de la fisuración en el proceso de corrosión de las armaduras es un tema controvertido. Las investigaciones [9.1 y 9.2] muestran que la corrosión no tiene una correlación clara con el ancho de las fisuras superficiales en el rango de tensiones que normalmente aparecen en la armadura bajo cargas de servicio. De hecho, está ligeramente relacionada con los límites para el ancho de las fisuras superficiales de 0,013 a 0,016 in. de los códigos anteriores. Además, se ha descubierto que el ancho real de las fisuras men las estructuras es altamente variable. Se ha observado una dispersión del orden de ±50%. Esto llevó a investigar alternativas para reemplazar los factores z límites para exposición exterior e interior, como figuraban en la edición anterior del código (ver Apéndice 9A).
Existe una fuerte correlación entre el ancho de las fisuras superficiales y el recubrimiento de hormigón, dc, como se ilustra en la Figura 9-1. Para una determinada deformación específica del acero, cuanto mayor sea el recubrimiento mayor será el ancho de las fisuras y mayor será la influencia sobre la apariencia. Entre 1971 y 1995, el código especificaba factores z limitantes en base al concepto de que era necesario limitar el ancho de las fisuras superficiales. Los valores especificados de z = 175 y 145 kips/in., para exposiciones interiores y exteriores, respectivamente, correspondían a fisuras de 0,016 y 0,013 in. de ancho (ver Apéndice 9A). Se asumía que limitando el ancho de las fisuras a estos valores se lograría protección contra la corrosión. Pero, para poder satisfacer
los valores límites de z especificados, el método básicamente alentaba la reducción del recubrimiento de hormigón, lo cual potencialmente podía perjudicar la protección contra la corrosión. Lo que es más, el método penalizaba fuertemente las estructuras con recubrimientos de más de 2 in. ya sea reduciendo la separación o las tensiones bajo cargas de servicio de la armadura.
La influencia de la fisuración en el proceso de corrosión de las armaduras es un tema controvertido. Las investigaciones [9.1 y 9.2] muestran que la corrosión no tiene una correlación clara con el ancho de las fisuras superficiales en el rango de tensiones que normalmente aparecen en la armadura bajo cargas de servicio. De hecho, está ligeramente relacionada con los límites para el ancho de las fisuras superficiales de 0,013 a 0,016 in. de los códigos anteriores. Además, se ha descubierto que el ancho real de las fisuras men las estructuras es altamente variable. Se ha observado una dispersión del orden de ±50%. Esto llevó a investigar alternativas para reemplazar los factores z límites para exposición exterior e interior, como figuraban en la edición anterior del código (ver Apéndice 9A).
lunes, 1 de diciembre de 2008
La Correcta Distribución de la Armadura de Tracción en Vigas y Losas Armadas.
Los requisitos de 10.6 exigen una correcta distribución de la armadura de tracción en vigas y losas armadas en una dirección a fin de controlar la fisuración por flexión. Las estructuras construidas en el pasado, usando métodos de Diseño por Tensiones de Trabajo y armadura con tensión de fluencia menor o igual que 40.000 psi, tenían bajas tensiones de tracción en las armaduras bajo cargas de servicio. Por lo tanto, en presencia de bajas tensiones de tracción en la armadura bajo cargas de servicio, estas estructuras no evidenciaban mayores problemas de fisuración por flexión.
Con la aparición de aceros de alta resistencia con tensiones de fluencia mayores o iguales que 60.000 psi, y con el uso de métodos de Diseño por Resistencia que permiten mayores tensiones en la armadura, el control de la fisuración por flexión ha cobrado mayor importancia. Por ejemplo, si una viga se diseñara usando el Método de Diseño por Tensiones de Trabajo y una tensión de fluencia de 40.000 psi, la tensión en la armadura bajo cargas de servicio sería de alrededor de 20.000 psi. Usando el Método de Diseño por Resistencia y una tensión de fluencia de 60.000 psi, la tensión bajo cargas de servicio podría ser de hasta 36.000 psi. Si de hecho la fisuración por flexión es proporcional a la tensión de tracción en el acero, es evidente que el proceso de diseño debe incluir criterios para controlar la fisuración.
Las primeras investigaciones del ancho de las fisuras en vigas y elementos solicitados a tracción axial indicaron que el ancho de las fisuras era proporcional a la tensión en el acero y al diámetro de las barras, pero inversamente proporcional a la cuantía de armadura. Investigaciones más recientes, realizadas usando barras conformadas, han confirmado que el ancho de las fisuras es
proporcional a la tensión en el acero. Sin embargo, se ha comprobado que hay otras variables importantes tales como la calidad del hormigón y el recubrimiento sobre las barras. Se debe recordar que el ancho de las fisuras es muy variable, aún en trabajos realizados en laboratorio bajo condiciones estrictamente controladas. Por este motivo, en el código sólo se presenta una expresión sencilla para controlar la fisuración, diseñada para obtener detalles de armado razonables que concuerden con estudios experimentales y experiencias anteriores.
Con la aparición de aceros de alta resistencia con tensiones de fluencia mayores o iguales que 60.000 psi, y con el uso de métodos de Diseño por Resistencia que permiten mayores tensiones en la armadura, el control de la fisuración por flexión ha cobrado mayor importancia. Por ejemplo, si una viga se diseñara usando el Método de Diseño por Tensiones de Trabajo y una tensión de fluencia de 40.000 psi, la tensión en la armadura bajo cargas de servicio sería de alrededor de 20.000 psi. Usando el Método de Diseño por Resistencia y una tensión de fluencia de 60.000 psi, la tensión bajo cargas de servicio podría ser de hasta 36.000 psi. Si de hecho la fisuración por flexión es proporcional a la tensión de tracción en el acero, es evidente que el proceso de diseño debe incluir criterios para controlar la fisuración.
Las primeras investigaciones del ancho de las fisuras en vigas y elementos solicitados a tracción axial indicaron que el ancho de las fisuras era proporcional a la tensión en el acero y al diámetro de las barras, pero inversamente proporcional a la cuantía de armadura. Investigaciones más recientes, realizadas usando barras conformadas, han confirmado que el ancho de las fisuras es
proporcional a la tensión en el acero. Sin embargo, se ha comprobado que hay otras variables importantes tales como la calidad del hormigón y el recubrimiento sobre las barras. Se debe recordar que el ancho de las fisuras es muy variable, aún en trabajos realizados en laboratorio bajo condiciones estrictamente controladas. Por este motivo, en el código sólo se presenta una expresión sencilla para controlar la fisuración, diseñada para obtener detalles de armado razonables que concuerden con estudios experimentales y experiencias anteriores.
sábado, 9 de agosto de 2008
Losas a Nivel Plano de Fundación.
Las ediciones del Código anteriores a 1995 no explicitaban si las losas a nivel del plano de fundación, construidas directamente sobre el terreno, estaban cubiertas por el Código o no. En la edición 1995 de ACI 318 se las excluyó explícitamente "… a menos que la losa transmita cargas verticales de otras partes de la estructura al suelo." La edición de 1999 amplió el campo de validez, e incluyó aquellas que "… transmiten cargas verticales o esfuerzos horizontales de otras partes de la estructura al suelo." Las carpetas de fundación y otras losas construidas directamente sobre el terreno que ayudan a soportar las cargas verticales y/o transferir los esfuerzos horizontales de la estructura soportada al suelo se deben diseñar conforme a los requisitos aplicables del Código, específicamente los del Capítulo 15 – Zapatas y cabezales de pilotes.
La metodología de diseño para una típica losa a nivel del plano de fundación difiere de la utilizada para otros elementos de hormigón, y se describe detalladamente en las Referencias 1.12 y 1.13. La Referencia 1.12 describe el diseño y la construcción de los pisos de hormigón construidos directamente sobre el terreno para edificios industriales, comerciales, y depósitos livianos y para construcciones industriales pesadas. La Referencia 1.13 contiene lineamientos para determinar el espesor de losa requerido para los pisos de hormigón construidos sobre el terreno utilizados en fábricas y depósitos pesados.
En 1999, además de las modificaciones incluidas en el artículo 1.1.6, en el Capítulo 21 – Requisitos Especiales para el Diseño Sismorresistente se introdujo una nueva Sección 21.8 – Fundaciones. Como en la edición 2002 del Capítulo 21 del Código se introdujeron nuevas secciones, ahora estos requisitos se encuentran en la Sección 21.10. El artículo 21.10.3.4 indica que "las losas a nivel del plano de fundación que resisten esfuerzos sísmicos provenientes de tabiques o columnas que forman parte del sistema resistente a los esfuerzos horizontales se deben diseñar como diafragmas estructurales de acuerdo con 21.9." Ahora que se encuentran en esta parte del Capítulo 21 estos requisitos se aplican solamente en las regiones de peligrosidad sísmica elevada o para las estructuras para las cuales se requiere un nivel de comportamiento o diseño sismorresistente elevado. En las regiones de peligrosidad sísmica baja o moderada, o en las estructuras para las cuales se requiere un nivel de comportamiento o diseño sismorresistente bajo o intermedio, en virtud del nuevo requisito incluido en el artículo 1.1.6, a las losas a nivel del plano de fundación se aplican los requisitos de los Capítulos 18 o del Capítulo 22 (ver
Tabla 1-3).
La metodología de diseño para una típica losa a nivel del plano de fundación difiere de la utilizada para otros elementos de hormigón, y se describe detalladamente en las Referencias 1.12 y 1.13. La Referencia 1.12 describe el diseño y la construcción de los pisos de hormigón construidos directamente sobre el terreno para edificios industriales, comerciales, y depósitos livianos y para construcciones industriales pesadas. La Referencia 1.13 contiene lineamientos para determinar el espesor de losa requerido para los pisos de hormigón construidos sobre el terreno utilizados en fábricas y depósitos pesados.
En 1999, además de las modificaciones incluidas en el artículo 1.1.6, en el Capítulo 21 – Requisitos Especiales para el Diseño Sismorresistente se introdujo una nueva Sección 21.8 – Fundaciones. Como en la edición 2002 del Capítulo 21 del Código se introdujeron nuevas secciones, ahora estos requisitos se encuentran en la Sección 21.10. El artículo 21.10.3.4 indica que "las losas a nivel del plano de fundación que resisten esfuerzos sísmicos provenientes de tabiques o columnas que forman parte del sistema resistente a los esfuerzos horizontales se deben diseñar como diafragmas estructurales de acuerdo con 21.9." Ahora que se encuentran en esta parte del Capítulo 21 estos requisitos se aplican solamente en las regiones de peligrosidad sísmica elevada o para las estructuras para las cuales se requiere un nivel de comportamiento o diseño sismorresistente elevado. En las regiones de peligrosidad sísmica baja o moderada, o en las estructuras para las cuales se requiere un nivel de comportamiento o diseño sismorresistente bajo o intermedio, en virtud del nuevo requisito incluido en el artículo 1.1.6, a las losas a nivel del plano de fundación se aplican los requisitos de los Capítulos 18 o del Capítulo 22 (ver
Tabla 1-3).
Etiquetas:
Losas,
Requisitos
Suscribirse a:
Entradas (Atom)