miércoles, 5 de agosto de 2009

Ya sea que un elemento de hormigón armado esté solicitado exclusivamente a torsión o a una combinación de flexión y corte, la rigidez de dicho elemento disminuirá luego de su fisuración. Después que el elemento se ha fisurado, la rigidez torsional sufre una reducción mucho mayor que la rigidez flexional. Si en un elemento el momento torsor Tu no se puede reducir por medio de una redistribución de las fuerzas internas en la estructura, dicho elemento se debe diseñar para la totalidad del momento torsor Tu (11.6.2.1). Esto se conoce como "torsión de equilibrio," dado que el momento torsor es necesario para el equilibrio de la estructura (ver Figura R11.6.2.1). Si se puede realizar una redistribución de las fuerzas internas, como en el caso de las estructuras indeterminadas, es posible reducir el momento torsor de diseño. Este tipo de momento torsor se conoce como "torsión de compatibilidad" (ver Figura R11.6.2.2). No es necesario que los elementos solicitados a torsión de compatibilidad se diseñen para un momento torsor mayor que el producto entre el momento torsor de fisuración y el factor de reducción de la resistencia (0,75 para torsión, ver 9.3.2.3). Para el caso de torsión de compatibilidad donde se verifique Tu > Tcr el elemento se puede diseñar para Tcr solamente, siempre que en el diseño de los demás elementos de la estructura se tome en cuenta la redistribución de las fuerzas internas (11.6.2.2). El momento torsor de fisuración Tcr se calcula usando la Ecuación (9) para los elementos no pretensados, usando la Ecuación (10) para los elementos pretensados, y usando la Ecuación (11) para los elementos no pretensados solicitados por una fuerza de tracción o compresión axial. Para las secciones huecas, en estas ecuaciones Acp no se reemplaza por Ag (11.6.2.2). Multiplicando el momento torsor de fisuración por (Ag/Acp) por segunda vez se refleja la transición entre la interacción circular entre las cargas de fisuración inclinada en corte y torsión correspondiente a elementos macizos, y la interacción aproximadamente lineal correspondiente a secciones huecas de pared delgada.

Ya sea que un elemento de hormigón armado esté solicitado exclusivamente a torsión o a una combinación de flexión y corte,
la rigidez de dicho elemento disminuirá luego de su fisuración. Después que el elemento se ha fisurado, la rigidez torsional sufre una reducción mucho mayor que la rigidez flexional. Si en un elemento el momento torsor Tu no se puede reducir por medio de una redistribución de las fuerzas internas en la estructura, dicho elemento se debe diseñar para la totalidad del momento torsor Tu (11.6.2.1). Esto se conoce como "torsión de equilibrio," dado que el momento torsor es necesario para el equilibrio de la estructura (ver Figura R11.6.2.1). Si se puede realizar una redistribución de las fuerzas internas, como en el caso de las estructuras indeterminadas, es posible reducir el momento torsor de diseño. Este tipo de momento torsor se conoce como "torsión de compatibilidad" (ver Figura R11.6.2.2). No es necesario que los elementos solicitados a torsión de compatibilidad se diseñen para un momento torsor mayor que el producto entre el momento torsor de fisuración y el factor de reducción de la resistencia (0,75 para torsión, ver 9.3.2.3). Para el caso de torsión de compatibilidad donde se verifique Tu > Tcr el elemento se puede diseñar para Tcr solamente, siempre que en el diseño de los demás elementos de la estructura se tome en cuenta la redistribución de las fuerzas internas (11.6.2.2). El momento torsor de fisuración Tcr se calcula usando la Ecuación (9) para los elementos no pretensados, usando la Ecuación (10) para los elementos pretensados, y usando la Ecuación
(11) para los elementos no pretensados solicitados por una fuerza de tracción o compresión axial. Para las secciones huecas, en estas ecuaciones Acp no se reemplaza por Ag (11.6.2.2). Multiplicando el momento torsor de fisuración por (Ag/Acp) por segunda vez se refleja la transición entre la interacción circular entre las cargas de fisuración inclinada en corte y torsión correspondiente a elementos macizos, y la interacción aproximadamente lineal correspondiente a secciones huecas de pared delgada.

0 comentarios:

Publicar un comentario