Este método aproxima la ordenada 1/Pn en la superficie S2 (1/Pn, ex, ey) mediante una ordenada correspondiente 1/P'n en el plano S'2
(1/P'n, ex, ey), el cual se define por los puntos característicos A, B y C como se indica en la Figura 7-10. Para cualquier sección
transversal en particular, el valor Po (correspondiente al punto C) es la resistencia a la carga bajo compresión axial pura; Pox
(correspondiente al punto B) y Poy (correspondiente al punto A) son las resistencias a la carga bajo excentricidades uniaxiales ey y
ex, respectivamente. Cada punto de la superficie verdadera se aproxima mediante un plano diferente; por lo tanto, la totalidad de la
superficie se aproxima usando un número infinito de planos.
La expresión general para la resistencia a la carga axial p ara cualquier valor de ex y ey es la siguiente:7.6
Reordenando las variables se obtiene:
Esta ecuación tiene una forma sencilla y las variables se pueden determinar fácilmente. Las resistencias a la carga axial Po, Pox y
Poy se determinan usando cualquiera de los métodos presentados anteriormente para flexión uniaxial con carga axial. Resultados
experimentales han demostrado que esta ecuación será razonablemente exacta si la flexión no gobierna el diseño. La ecuación sólo
se debe usar si:
Pn ≥ 0,1 f'c A
martes, 1 de septiembre de 2009
Suscribirse a:
Enviar comentarios (Atom)
0 comentarios:
Publicar un comentario